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Abstract. Bayesian networks (BNs) were pioneered to solve problems in Artificial 
Intelligence (AI) and have proven successful in “intelligent” applications such as 
medical expert systems, speech recognition, and fault diagnosis. In practical terms, 
one of the major benefits from using BNs is in that probabilistic and causal 
relationships among variables are represented and executed as graphs and can thus 
be easily visualized and extended, making model building and verification easier 
and faster. We illustrate how BNs can be used for risk analysis by introducing a 
novel approach modeling causal chains containing event triggers, consequences 
and interventions. However, if we want to incorporate continuous (as opposed to 
just discrete) variables in BN models the established BN tools and methods are 
inadequate. This paper reports on a new, unifying, approach to modeling 
continuous variables in BNs, called dynamic discretization, which approximates 
continuous variables without recourse to the traditional approach of Monte Carlo 
simulation methods. We illustrate the practical usefulness of the approach with an 
application involving the fusion of diverse sources of temporal data for fault 
diagnosis, classification and prediction of system behavior.  
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1. Introduction 

Bayesian Networks (BNs) have been widely used to represent full probability 
models in a compact and intuitive way. In the BN framework the independence 
structure (if any) in a joint distribution is characterized by a directed acyclic graph, 
with nodes representing random variables, which can be discrete or continuous, and 
may or may not be observable, and directed arcs representing causal or influential 
relationship between variables [1]. The conditional independence assertions about the 
variables, represented by the absence of arcs, reduce significantly the complexity of 
inference and allow us to decompose the underlying joint probability distribution as a 
product of local conditional probability distributions (CPDs) associated to each node 
and its respective parents [2, 3]. If the variables are discrete, the CPDs can be 
represented as Node Probability Table (NPTs), which list the probability that the child 
node takes on each of its different values for each combination of values of its parents.  

 
BNs were pioneered to solve problems in Artificial Intelligence (AI) and have 

proven successful in “intelligent” applications such as medical expert systems, speech 



recognition, and fault diagnosis. In practical terms, one of the major benefits from 
using BNs is in that probabilistic and causal relationships among variables are 
represented and executed as graphs and can thus be easily visualized and extended, 
making model building and verification easier and faster. The power, generality and 
flexibility offered by BNs are now widely recognized and they are being successfully 
applied in diverse fields, including risk analysis and decision support. 

 
Our own work in this area has produced solutions to a number of real world, high-

stakes problems such as: 
 

• Military vehicle reliability, [4]; 
• Risk of mid-air collisions in Air Traffic Control  [5]; 
• Software defect prediction in consumer electronics products [6, 7]; 

 
As a simple illustration of the power of the BN approach we present (Section 2) a 

coherent and elegant method of defining and analyzing risks. This approach is based on  
modeling causal chains containing event triggers, consequences and interventions. This 
BN approach not only avoids the irrationality that characterizes many of the traditional, 
naïve, approaches to risk quantification, but it actually makes the whole thing much 
simpler. 

 
If we want to incorporate continuous (as opposed to just discrete) variables in BN 

models the established BN tools and methods are inadequate. Hence (in Section 3) we 
describe a new, unifying, approach to modeling continuous variables in BNs, called 
dynamic discretization, which approximates continuous variables without recourse to 
the traditional approach of Monte Carlo simulation methods. In Section 4 we illustrate 
the practical usefulness of the approach with an application involving the fusion of 
diverse sources of temporal data for fault diagnosis, classification and prediction of 
system behavior. 

2. Modeling Cause and Effect in Bayesian Networks 

2.1. Risk Analysis  

Our first example application of BNs is in the area of risk analysis. It focuses on 
exploiting cause and effect to better represent and structure risk problems and quantify 
risk in a simple, attractive way that is both easy to understand and communicate. 

 
COSO [8] defines a risk as an event that can have negative impact (and conversely 

an event that can have a positive impact is an opportunity). The RiskIT definition [9] is 
much more general, defining risk as: 

 
“ a possibility of loss, the loss itself, or any characteristic, object or action that is 

associated with that possibility” . 
 
We will use the COSO definition because it is clear and simple. But it turns out 

that the RiskIT definition can be regarded as equivalent using our approach.  



 
Since a risk is an event that can have negative impact it follows that such events 

may be characterized by a causal chain involving (at least) the risk event itself and at 
least one consequence event (which characterizes the impact). Additionally there may 
be one or more trigger events, one or more control events, and one or more mitigating 
or inhibiting events. This is shown in the BN example of Figure 1 . 

 
Figure 1 Causal taxonomy of risk 

 
A risk is therefore characterized by a set of events as shown. These events each 

have a number of possible outcomes (in the simplest case you can assume each has just 
two outcomes true and false). Of course the ‘uncertainty’ associated with a risk is not a 
separate notion (as assumed in some approaches). Every event (and hence every object 
associated with risk) has uncertainty that is characterised by the probabilities of the 
event’s outcomes.  

 
Clearly risks in this sense depend on stakeholders and perspectives, but the benefit 

of this approach is that, once a risk event is identified from a particular perspective, 
there will be little ambiguity about the concept and a clear causal structure that ‘tells 
the full story” . For example, since “ Flood”  is the risk event (taking the central role in 
the diagram) the perspective must be of somebody who has responsibility for both the 
associated control and mitigant. Hence, in Figure 1 the perspective is definitely not that 
of, for example, a householder in the village, but rather something like the local 
authority responsible for amenities in the village. A householder’s perspective of risk 
would be more like that shown in Figure 2. 



 
Figure 2 Flood risk from the householder perspective 

 
What is intriguing is that the types of events are all completely interchangeable 

depending on the perspective. Consider the example shown in Figure 3. The 
perspective here might be the Local Authority Solicitor. Note that: 

 
• The risk event now is “ Loss of life” . This was previously the trigger 
• “ Flood”  is no longer the risk event, but the trigger 
• “ Rapid emergency response”  becomes a control rather than a mitigant 
 
It is not difficult to think of examples where controls and mitigants become risk 

events and triggers. This interchangeability should be considered a benefit rather than a 
restriction since it stresses the symmetry and simplicity of the approach.  

 



 
Figure 3 Interchangeability of concepts depending on perspective 

2.2. Building BNs 

Using software like AgenaRisk [10] it is possible to build arbitrarily large risk-
based BNs based on the above approach. This involves the following steps: 

 
1. Consider the set of risk events from a given perspective 
2. For each risk event identify any triggers and/or controls 
3. For each risk event identify any consequences and mitigants 
 
By ‘chaining’  together different risks we can model multiple risks, risks from 

different perspectives, and common causes, consequences and mitigants, all within the 
same model. So you really can turn your risk list into a meaningful story. Next we 
show how to get the BN to generate quantified risk predictions and other useful 
functions like simulation, backward reasoning and what-if-analysis.  

 
Once the topology of a BN has been constructed we need to add node probability 

tables (NPT) to it, which represent the quantitative specification of local dependencies 
between the nodes. This means we need to compute the conditional probabilities for 
each combination of events and states in the model.  At first glance this looks easy but 
in practice this can prove tricky although not impossible to achieve by any means. To 
help in this there are means of eliciting and determining valid probability values but 
this is outside the scope of this paper. 

2.3. Executing BNs 

Once armed with the BN and the NPTs we can then run a BN propagation 
algorithm to calculate the marginal probabilities of any node given any configuration of 
valid (i.e. non contradictory evidence). A range of robust and efficient propagation 
algorithms has been developed for exact inference on Bayesian networks with discrete 



variables [11, 12, 13]. The common feature of these algorithms is that the exact 
computation of posterior marginal distributions is performed through a series of local 
computations over a secondary structure, a tree of node clusters, which allows 
calculating the marginal without computing the joint distribution. See also [14]. 

 
Figure 4 shows a sample NPT for the Risk Event node “ Flood?”  along with the 

marginal probability distributions for all nodes in the model, as calculated using the 
AgenaRisk propagation algorithm (although in this example all nodes are Boolean but 
BNs can handle many valued discrete states). 

 
Figure 4 BN with NPT for node “ Flood?”  

 
The posterior marginal probabilities for all nodes in the model, as shown in Figure 

4,  quantify our degree of belief in the consequence given our uncertainties about the 
trigger, control and mitigation events. In this case the marginal probability of “ Loss of 
Life”  is 0.00703. 

 
BNs are dynamic; as new data is entered the model learns or updates the prediction 

to take account of changed circumstances. This makes them highly suitable for 
sensitivity analysis, parameter learning and “ what if?”  analysis. Take for example the 
case where the Dam Bursts event has actually occurred and the Flood Barrier has 
failed: we enter this new data as “ evidence”  into the BN and recalculate the model to 
achieve the new marginal posterior distributions as shown in Figure 5. Now, given this 
new evidence, the probability of Loss of life has increased to 0.19 from the 0.00703. 



 
Figure 5 BN with evidence entered on Trigger and Control and Consequence prediction updated 

3. Simulation by Dynamic Discretization 

3.1. Overview 

In the previous risk analysis problem we used nodes with discrete states only. 
Given that many of the quantities of interest in real problems will be continuous valued 
variables this presents a severe, or even terminal, constraint on using BNs for more 
general risk modeling purposes. Here we introduce a new approach, embedded within 
AgenaRisk that allows the calculation of both discrete and continuous quantities within 
a BN. This approach, called dynamic discretization, is a major step forward and 
presents a clear alternative to Monte Carlo simulation. 

 
The present generation of BN software tools [15, 16] attempt to model continuous 

nodes by numerical approximations using static discretization Discretization allows 
approximate inference in a “ hybrid”  BN without limitations on relationships among 
continuous and discrete variables. However, current software implementations require 
users to define a discretization of the states of any numeric node (whether it is 
continuous or discrete) as a sequence of pre-defined intervals, which remain static 
throughout all subsequent stages of Bayesian inference regardless of any new 
conditioning evidence. The more intervals you define, the more accuracy you can 
achieve, but at a heavy cost of computational complexity. This is made worse by the 
fact that you do not necessarily know in advance where the posterior marginal 
distribution will lie on the continuum for all nodes and which ranges require the finer 



intervals. It follows that, where a model contains numerical nodes having a potentially 
large range, results are necessarily only crude approximations.  

 
Let X  be a continuous random node in the BN. The range of X  is denoted by 

XΩ , and the probability density function (PDF) of X , with support XΩ , is denoted 

by Xf . The idea of discretization is to approximate Xf  by, first, partitioning XΩ  into a 

set of interval { }X jwΨ = , and second, defining a locally constant function Xf�  on the 

partitioning intervals. The task consists in finding an optimal discretization set 

{ }X iωΨ =  and optimal values for the discretised probability density function Xf� . 

Discretization operates in much the same way when X  takes integer values but here 
we will focus on the case where X  is continuous. The approach to dynamic 
discretization described here searches XΩ  for the most accurate specification of the 
high-density regions (HDR), given the model and the evidence, calculating a sequence 
of discretization intervals in XΩ  iteratively. At each stage in the iterative process a 

candidate discretization, XΨ , is tested to determine whether the resulting discretised 

probability density Xf�  has converged to the true probability density Xf  within an 

acceptable degree of precision. At convergence, Xf  is then approximated by Xf� .  

3.2. Dynamic discretization: An Example 

To illustrate the outputs of the dynamic discretization approach let us consider the 
probability distribution for a sum of two independent random variables Z X Y= + , 
where ~ XX f  and ~ YY f , given by the convolution function: 

 
( ) ( ) ( ) ( )Z X Y X Yf z f f z f x f z x dx= × = −�  

 
Calculating such a distribution represents a major challenge for most BN software. 

Traditional methods to obtain this function include Fast Fourier Transform (FFT) [17] 
or Monte Carlo simulation. Here we compare an example and solution using 
AgenaRisk with the analytical solution produced by convolution of the density 
functions. 

 
Consider the case ( 2, 2)Xf Uniform= − and (0,0, 2)Yf Triangular= . The 

probability density for Z X Y= + can be obtained analytically by  
 

( )
2 2 0

0 0 2

(1/ 4 / 8) (1/ 4 / 8) (1/ 4 / 8)
z

Z
z

f z x dx x dx x dx
+

−

= + + + + +� � �  

The resulting mean and variance are [ ] 0.667E Z = and ( ) 1.555Var Z = . 
 
Using dynamic discretization, over 40 iterations, results in the set of marginal 

distributions for Z X Yf f f= ×  as shown in Figure 6. The summary statistics are 



0.667Zµ =  and 2 1.559Zσ = , which are very accurate estimates of the analytical 
solution. 

 

 
Figure 6 Marginal distributions from function Z X Yf f f= ×  after 40 iterations as shown in AgenaRisk 

4. Data Fusing using Dynamic Bayesian Networks and dynamic discretization 

In this application we are extending the causal approach inherent in BNs and 
extending them to the temporal dimension to illustrate how: 

 
• Temporal models can be built and constructed 
• Unknown states of a system can be inferred as data is collected and this can be 

used to learn and predict behavior 
• This approach, embedded in a Dynamic Bayesian Network (DBN), can be 

used for online monitoring and supervision of risky control problems. 
 
Typically such dynamical systems are composed of mixtures of discrete and 

continuous nodes and hence we need methods like dynamic discretization to produce 
approximate solutions. 

 
Here we wish to estimate the probability of a sensor being in a faulty state at any 

point in time. We are given a sequence of sensor readings taken from a system whose 
state is represented by a position and velocity vector ( , )t tP V  where the nodes are 
hidden and evolve over time. We also assume the system is self-repairing and that these 
repairs are random (or the fault might be transient). 

 
We can model this as a Switching Kalman Filter Model (SKFM) and typically 

would have to use Monte Carlo or more complex methods to find a solution (see [18] 
for details). In AgenaRisk we model this as a Dynamic BN (DBN), a model containing 
temporal nodes, as follows. 



 
The first element in the DBN is a double Kalman Filter to model the dynamical 

elements of the system. This comprises:  
 

• Observation model tO to filter sensor noise from observations:  
 

2( | ) ( , )t t tp O P Normal P σ=  
 

• Transition model of two difference equations for tP  and tV :  
 

1 1t t tP P V− −= + , 1t tV V −=  
 

• Initial conditions for each of the system variables:  
 

0 1 0 2(0, ), (0, )V N P Nθ θ= =  
 
To model the fact that the sensor is self-repairing we require a transition model for 

the sensor, tS : 
 

1

1

1

1

( | ) 0.99

( | ) 0.01

( | ) 0.9

( | ) 0.1

t t

t t

t t

t t

p S OK S OK

p S Faulty S OK

p S Faulty S Faulty

p S OK S Faulty

−

−

−

−

= = =
= = =
= = =
= = =

 

 
Sensor reliability is modelled in the observation model by conditioning the 

variance parameter, 2σ , on the sensor’ s state: 
 

2

2

( | , ) ( , 10)

( | , ) ( , 1000)
t t t t

t t t t

p O P S OK Normal P

p O P S OK Normal P

σ
σ

= = =

= ¬ = =
 

 
The DBN graph for the complete model over seven time periods is shown in 

Figure 7: 
 



 
Figure 7 DBN graph for the SKFM for sensor reliability for seven time periods 

 
We use dynamic discretization to solve the model over 25 iterations for a set of 

simulated actual and observed positions. At each time period we estimate the 
probability of the sensor being in a faulty state, represented by tS . The results are 
shown in Figure 8 along with the corresponding time series plot of tA (simulated 
actual), tO  (observed) and ( )tp S OK=  (shown as %OK). 

 
Notice that the initial observations lead to a rapid increase in the probability that 

the sensor is faulty. However, after time period 8 the observed position better tracks the 
actual position and as a consequence the probability that it has repaired itself also 
increases. 
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Figure 8 Table and time series plot of system position and probability of sensor failure 

5. Conclusions 

The power, generality and flexibility offered by BNs are now widely recognized 
and they are being successfully applied in diverse fields, including risk analysis and 
decision support. This paper reports on a new, unifying, approach to modeling 



continuous variables in BNs, called dynamic discretization, which approximates 
continuous variables without recourse to the traditional approach of Monte Carlo 
simulation methods. 

 
We have also illustrated the applicability of BN modeling in two very diverse 

application areas: risk assessment and sensor diagnosis. We will present the 
conclusions for each separately. 

5.1. Risk analysis 

The BN approach presented satisfies minimalist requirements described by 
Chapman and Ward in [19] where they recommend that any approach to risk 
quantification: 

 
“should be so easy to use that the usual resistance to appropriate quantification 

based on lack of data and lack of comfort with subjective probabilities is overcome”. 
 
Moreover, the approach ensures that: 
 

• Every aspect of risk measurement is meaningful in the context – the BN tells a 
story that makes sense. This is in stark contrast with the “ risk = probability x 
impact”  approach where not one of the concepts has a clear unambiguous 
interpretation. 

• Every aspect of uncertainty is fully quantified since at any stage we can simply 
read off the current probability values associated with any event. 

• It provides a visual and formal mechanism for recording and testing subjective 
probabilities. This is especially important for a risky event where you do not have 
much or any relevant data about. 

 
Although the approach does NOT explicitly provide an overall risk “ score”  and 

prioritization these can be grafted on in ways that are much more meaningful and 
rigorous. 

5.2. Data fusion 

Typically many applications of risk take place in a context where decisions about 
control and intervention have to be made. Our approach, using Dynamic Bayesian 
Networks (DBNs), has shown how we can model and embed risk measurement in 
systems that evolve and change over time. One can easily imagine worthwhile and 
interesting applications of these ideas in numerous areas: 

 
• Intelligent tracking of risks in complex organizational systems 
• Automatic updating of risk models given new observations 
• Classification of hidden risky states in agent based systems 
• Automatic hypothesis selection to characterize system behavior 
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