Using AgenaRisk to visualise risk and model uncertainty

Martin Neil

Agena Ltd & Risk Assessment and Decision Analysis Research Group, Department of Computer Science, Queen Mary, University of London London, UK

> Web: www.agenarisk.com Email: martin@agena.co.uk

What is AgenaRisk?

- Helps you model risk, analyse uncertainty and make better decisions
- Combines the benefits of Bayesian networks, statistical simulation and spreadsheet-like analysis
- Is visual, easy to use, intuitive and powerful

Who should use AgenaRisk?

Risk and quantitative analysts

Currently using spreadsheets wishing to model uncertain variables using probability distributions

Bayesian network researchers and designers

Looking to handle continuous variables for diagnosis in objectbased and dynamic models

• Al researchers and practitioners

Interested in expert systems and machine learning

Statisticians

Wishing to estimate unknown parameters, from data, using Bayesian inference

• Engineers and scientists

Interested in incorporating risk and uncertainty into their models

• Quality and reliability engineers

Looking to calculate system or process reliability using fault trees, expert judgement and failure data

• Academics

Probability theory, Statistical simulation, Bayesian networks and AI, Risk assessment, Decision analysis, Quality and Six Sigma and Reliability Engineering

Risk Map*

- Nodes represent
 - variables
 - events
 - quantities
- Links represent relationships
 - relevance
 - causality
- Easy to support and understand

Measuring Scales

- Risk Node Types
 - Boolean (Yes/No, True/False)
 - Labelled (Red, Blue, Green)
 - Numeric (Integer, Continuous, Discrete)
 - Ranked (High, Medium, Low)

Discrete Probabilities

• Prior probabilities

No	0.9
Yes	0.1

Conditional Probabilities

Dam bursts	N	o	Yes		
Flood Barri	No	Yes	No	Yes	
No	1.0	0.8	0.9	0.0	
Yes	0.0	0.2	0.1	1.0	

• Result viewed as marginal probability distribution

Town Flood Example

Calculation of Town Flood Risk

Backwards Reasoning

- Estimate causes from effects!
- Useful way to model uncertain indicators

Continuous Probabilities by Simulation

Model Statistical Distributions E.g. Normal

$$p(X) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$$

Simulation Model Example

Beta-Binomial Example

Beta prior = belief in fairness of coin

Sensitivity analysis and fast comparison using scenarios

	B	🔓 🔥 💋 海	🍋 🖬 🕒 🛛	<mark>s</mark> 🗉 🚽 🖷 🕻	H	ligi 🔚 📈 🛛 🕼		3 🖏 75	
>	~	Risk Scenarios					6	00000000000	90
		Risk Map	Risk Table						
R				Ignorant prior		Strong prior		Biased prior	
<u>v</u>	1	New Risk Table							
EXF	-	Type of prior		Ignorant	-	Strong	-	Biased	-
		Trials		No Answer	-	No Answer	•	No Answer	-
Ĕ		Heads							
R									

Statistical Learning Example

Connecting Risk Maps using Building Blocks

 Connect risk maps via input/output risk nodes

 Create complex time based or complex structural models

Dynamic Flood Example

"Risky" Applications

- Aircraft Mid-air collision
- Software defects
- Systems reliability
- Warranty return rates of electronic parts
- Operational risk in financial institutions
- Predict hazards in petrochemical industry
- Project portfolio risk profiling

Six Sigma Quality Control

Mid Air Collision Prediction

Final Remarks

Structured Method

- Based on 300 year old proven Bayes' theorem
- Enabled by modern computer power & technology
- Beyond current statistical & Monte Carlo techniques
- Combines subjective judgements with data

• Risk Maps enable Visual Communication

- Managing risk through pictures
- Useable by risk novices as well as experts
- Makes complex risk problems easily communicable
- AgenaRisk is Industrial Strength
 - Enables scalable, reusable & auditable risk models
 - Integrates easily with DBMS & Excel
 - Enables professional developers to build end-user applications

asena